The Riemannian structure of Alexandrov spaces
نویسندگان
چکیده
منابع مشابه
Lorentz and Semi-riemannian Spaces with Alexandrov Curvature Bounds
A semi-Riemannian manifold is said to satisfy R ≥ K (or R ≤ K) if spacelike sectional curvatures are ≥ K and timelike ones are ≤ K (or the reverse). Such spaces are abundant, as warped product constructions show; they include, in particular, big bang Robertson-Walker spaces. By stability, there are many non-warped product examples. We prove the equivalence of this type of curvature bound with l...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولOn the structure of pseudo-Riemannian symmetric spaces
Following our approach to metric Lie algebras developed in a previous paper we propose a way of understanding pseudo-Riemannian symmetric spaces which are not semi-simple. We introduce cohomology sets (called quadratic cohomology) associated with orthogonal modules of Lie algebras with involution. Then we construct a functorial assignment which sends a pseudo-Riemannian symmetric space M to a t...
متن کاملDifferential Geometric Aspects of Alexandrov Spaces
We summarize the results on the differential geometric structure of Alexandrov spaces developed in [Otsu and Shioya 1994; Otsu 1995; Otsu and Tanoue a]. We discuss Riemannian and second differentiable structure and Jacobi fields on Alexandrov spaces of curvature bounded below or above.
متن کاملThe co-Riemannian Structure of Smooth Loop Spaces
We construct a natural co-Riemannian structure on the manifold of smooth loops in a Riemannian manifold. We show that the smooth loop space of a stringmanifold is a per-Hilbert–Schmidt locally equivalent co-spin manifold and thus admits a Dirac operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1994
ISSN: 0022-040X
DOI: 10.4310/jdg/1214455075